Altered expression: Epigenetics and its influence on human development

Tortoiseshell cats get their dappled colouration from X inactivation (photo credit: Tony Hammond via Flickr)
Tortoiseshell cats get their dappled colouration from X inactivation (photo credit: Tony Hammond via Flickr)

Our genetic make-up determines a lot about who we are – it determines whether we have blue eyes or brown, what blood group we have, or whether we’re predisposed to cystic fibrosis or sickle cell anaemia. But we’re beginning to learn that we’re far more than the sum of our genetic parts. Our genes only tell part of the story of who we are.

Just as important as what genes we’ve inherited from our parents, is how those genes are switched on and off throughout our lifetime. This complex system of genetic regulation has been the focus of the burgeoning field of epigenetics.

I was joined on Up Close recently by geneticist Marnie Blewitt. We chatted about epigenetics and her work on one of the coolest areas of epigenetics – X inactivation. Marnie heads a lab that studies epigenetics at the Walter and Eliza Hall Institute of Medical Research.